

chinet

chinet is a C++ library to create optimize, sample, and archive global
models. A global model is a model, that unites multiple data-sets and
seeks for a joint description of the united dataset.

Global models can unite datasets of the same kind or datasets of
different types. A typical examples of a global model in fluorescence
experiments is the joint description of multiple fluorescence
correlation curves in a titration and the joint description of multiple
fluorescence decay curves reporting on FRET in a biomolecular structure
by a single structural model.

Computing a global model with a large diverse set of different data
can be computationally expensive. To reduce the computational costs
and to decrease the evaluation time of a global model defined by chinet,
the mutual dependencies of the model parameters are modeled by a graph
structure that connects “computing nodes”. When a a set of parameters is
changed only computing nodes that are affected by these changes are
evaluated. Independent nodes are evaluated in parallel.

The state of the evaluation graph can be written to a database for
documentation purposes and reconstructed using unique identifies
provided by the database.

chinet is NOT intended as ready-to-use software for specific application
purposes.

Contents

	Installation

	Curves

	C++ API

	Glossary

	References

Indices and tables

	Index

	Search Page

License

chinet is released under the open source MIT license [https://opensource.org/licenses/MIT].

Installation

chinet can either be installed from prebuilt binaries or from the source code. For most users it is recommended
to install chinet using the prebuilt binaries. Below the installation using prebuilt binaries and the
prerequisites to compile chinet are briefly outlined.

Prebuilt binaries

It is recommended to install chinet for Python environments via conda by.

conda install -c tpeulen chinet

Alternatively, chinet can be installed via pip.:

pip install chinet

Compliation

chinet can be compiled and installed using the source code provided in the git repository.

git clone --recursive https://github.com/tpeulen/chinet.git
cd chinet
sudo python setup.py install

To compile chinet a set of prerequisites need to be fulfilled:

	An installed compiler.

	The HDF5 [https://www.hdfgroup.org/] library with C/C++ include files.

	A recent 64bit Python [https://www.python.org/] installation with include files.

	cmake [https://cmake.org/]

	SWIG [http://www.swig.org/]

Windows

On windows chinet is best compiled with the Visual Studio 2017 [https://visualstudio.microsoft.com/]. For
compilation the Visual Studion Community edition is sufficient. In addition to Visual Studio the libraries and the
include files as listed above need to be installed. The prebuilt binaries are compiled on Windows 10 with using
64bit anaconda Python environments miniconda [https://docs.conda.io/en/latest/miniconda.html] using the conda
build recipe that is provided with the source code in the conda-recipe folder.

MacOS

For MacOS the prebuilt binaries are compiled on MacOS 10.13 with the Apple clang compiler using a anaconda
distribution and the provided conda-recipe.

Linux

The Linux prebuilt binaries are compiled on Ubuntu 18.04 in an anaconda distribution and the provided
conda-recipe.

Conda

A conda recipe is provided in the folder ‘conda-recipe’ to build the chinet library with the
conda build [https://docs.conda.io/projects/conda-build/en/latest/] environment.

To build the library download the recipe, install the conda build package and use the provided
recipe to build the library.

conda install conda-build
conda build conda-recipe

Curves

The library chinet uses the class Curve to save and operate on the data of a model. One dimensional
models derive from the Curve class. A Curve object has properties for the x-values, the y-values, and
the errors of the x- and y-values.

import chinet as flm
import numpy as np

curve = flm.Curve()
x = np.linspace(0, 6, 100)
y = np.sin(x)
curve.set_x(x)
curve.set_y(y)
(y == curve.get_y())
(x == curve.get_x())

Curve objects have the methods add, mul, div, and sub to add, multiply, divide and subtract
and that take either Curve objects or floating point numbers as arguments. These operations act element-wise on
the y-axis values of the Curve objects. In addition to these elementary operations, the content of a Curve
object can be freely shifted with respect to the x-axis. For non-integer shifts the y-values are linearly interpolated.
By default, if no error is provided for the y-values the error is initialized with ones.

import chinet as flm
import numpy as np
import pylab as p

curve = flm.Curve()
x = np.linspace(0, 6, 100)
y = np.sin(x)
curve.set_x(x)
curve.set_y(y)

p.plot(curve.get_x(), curve.get_y())

curve.shift(1.5)
p.plot(curve.get_x(), curve.get_y())

curve.add(curve)
p.plot(curve.get_x(), curve.get_y())

curve.mul(3.1)
p.plot(curve.get_x(), curve.get_y())

p.show()

(Source code)

Above, shifting, addition, and multiplication are illustrated for a curve. Note, the multiplication operation can
also be used with two curves.

Curve objects can be saved and loaded using the methods save and from_json

import chinet as flm
import numpy as np

curve = flm.Curve()
x = np.linspace(0, 6, 100)
y = np.sin(x)
curve.set_x(x)
curve.set_y(y)

curve.save("test.json")
c = flm.Curve()
c.from_json("test.json")

A

C++ API

Glossary

	FRET rate constant
	The FRET rate constant, $latex k_{RET}$, quantifies the FRET process by the number of quanta transferred
from the donor’s excited state to the acceptor per time. It depends on the mutual dipole orientation of the
donor and the acceptor fluorophore, the distance between the donor and acceptor, \(R_{DA}\), the Förster
radius, \(R_0\) of the dye pair, and the corresponding fluorescence lifetime of the donor in the absence
of FRET, \(\tau_{0}\). The orientation factor \(\kappa^2\) captures The mutual dipole orientation.

\[k_{RET} = \frac{1}{\tau_0} \kappa^2 \left(\frac{R_0}{R_{DA}} \right)^{6}\]

Note, for the calculation of the FRET rate constant the fluorescence lifetime has to match the Förster radius.
Meaning the fluorescence lifetime of the corresponding donor fluorescence quantum yield, \(\Phi_{F}^{D0}\)
should be used.

	CLSM confocal laser scanning microscopy
	PDA Photon Distribution Analysis
	MFD (Multiparameter Fluorescence Detection)
	A MFD experiments is a time-resolved fluorescence experiment which probes the absorption and fluorescence,
the fluorescence quantum yield, the fluorescence lifetime, and the anisotropy of the studied chromophores
simultaneously (see [KS01])

	FCS (Fluorescence correlation spectroscopy)
	FCS is a method which relies on fluctuations on the recorded signals to characterize molecular interaction such
as binding and unbinding, chemical reaction kinetics, diffusion of fluorescent molecules (see [EM74]
and [MEW72])

	FRET efficiency
	The FRET efficiency is the yield of a FRET process. A FRET process transfers energy from the excited state of
a donor fluorophore to an acceptor fluorophore. The number of donor molecules in an excited state which
transfers energy to an acceptor defines the yield of this energy transfer.

\[E = \frac{transfered}{excited}\]

Practically, mostly the donor and acceptor fluorescence intensities are used to obtain an experimental estimate
for this yield.

	FRET induced donor decay
	The FRET-induced donor decay is a time-resolved intensity independent measure of FRET similar to the
time-resolved anisotropy defined by the ratio of the donor fluorescence decay in the presence and the
absence of FRET (see: [POS17]).

	Instrument response function (IRF)
	IRF stands for instrument response function. In time-resolved fluorescence measurements the IRF is the temporal
response of the fluorescence spectrometer to a delta-pulse. Suppose a initially sharp pulse defines the time of
excitation / triggers the laser, then recorded response of the fluorescence spectrometer is broadened due to:
(1) the temporal response of the exciting light source, (2) the temporal dispersion due to the optics of the
instrument, (3) the delay of the light within the sample, and (4) the response of the detector. As the most
intuitive contribution to the IRF is the excitation profile, the IRF is sometimes called ‘lamp function’.
The IRF is typically recorded by minimising the contribution of (3), e.g., by measuring the response of the
instrument using a scattering sample, or a short lived dye.

	Time-tagged time resolved (TTTR)
	TTTR stands for time tagged time-resolved data or experiments. In TTTR-datasets the events, e.g., the detection
of a photon, are tagged by a detection channel number. Moreover, the recording clock usually registers the
events with a high time resolution of a few picoseconds. For long recording times of the detected events,
a coarse and a fine clock are combined. The fine clock measures the time of the events relative to the coarse
clock with a high time resolution. The time of the coarse and the fine clock is usually called macro and
micro time, respectively.

	FRET positioning system (FPS)
	FRET positioning system, FPS, is an approach to determine structural models based on a set of FRET measurements.
FPS explicitly considers the spatial distribution of the dyes. This way experimental observables, i.e., FRET
efficiencies may be predicted precisely.
The FPS-toolkit is available from the web page [http://www.mpc.hhu.de/software/fps.html] of the Seidel
group of the Heinrich Heine University. An implementation of accessible volume simulations
(AV [https://github.com/Fluorescence-Tools/LabelLib]) used in FPS are available as open source.

	Time correlated single photon counting (TCSPC)
	Time correlated single photon counting (TCPSC) is a technique to measure light intensities with picosecond
resolution. Its main application is the detection of fluorescent light. A pulsed light source excites a
fluorescent sample. A single photon detector records the emitted fluorescence photons. Thus, per excitation
cycle, only a single photon is detected. Fast detection electronics records the time between the excitation
pulse and the detection of the fluorescence photon. A histogram accumulates multiple detected photons to yield
a time-resolved fluorescence intensity decay.

	SWIG
	SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level
programming languages. SWIG can be used with different types of target languages including common scripting
languages such as Javascript, Perl, PHP, Python, Tcl and Ruby and non-scripting languages such as C#, D,
Go language, Java, Octave, and R. SWIG is free software and the code that SWIG generates is compatible with
both commercial and non-commercial projects. tttrlib is C/C++ based to provide the capability for a
broad variety of languages to interface its provided functionality.

References

	EM74

	Elliot L Elson and Douglas Magde. Fluorescence correlation spectroscopy. i. conceptual basis and theory. Biopolymers: Original Research on Biomolecules, 13(1):1–27, 1974.

	KS01

	Ralf Kühnemuth and Claus A. M. Seidel. Principles of single molecule multiparameter fluorescence spectroscopy. Single Molecules, 2:251–254, 2001. doi:10.1002/1438-5171(200112)2:4<251::aid-simo251>3.0.co;2-t [https://doi.org/10.1002/1438-5171(200112)2:4<251::aid-simo251>3.0.co;2-t].

	MEW72

	Douglas Magde, Elliot Elson, and Watt W Webb. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Physical Review Letters, 29(11):705, 1972.

	POS17

	Thomas-Otavio Peulen, Oleg Opanasyuk, and Claus AM Seidel. Combining graphical and analytical methods with molecular simulations to analyze time-resolved fret measurements of labeled macromolecules accurately. The Journal of Physical Chemistry B, 121(35):8211–8241, 2017.

Index

 C
 | F
 | I
 | M
 | P
 | S
 | T

C

 	
 	CLSM confocal laser scanning microscopy

F

 	
 	FCS (Fluorescence correlation spectroscopy)

 	FRET efficiency

 	
 	FRET induced donor decay

 	FRET positioning system (FPS)

 	FRET rate constant

I

 	
 	Instrument response function (IRF)

M

 	
 	MFD (Multiparameter Fluorescence Detection)

P

 	
 	PDA Photon Distribution Analysis

S

 	
 	SWIG

T

 	
 	Time correlated single photon counting (TCSPC)

 	
 	Time-tagged time resolved (TTTR)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 chinet

 		
 Installation

 		
 Prebuilt binaries

 		
 Compliation

 		
 Windows

 		
 MacOS

 		
 Linux

 		
 Conda

 		
 Curves

 		
 C++ API

 		
 Glossary

 		
 References

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

